
SAS Programming Fundamentals   II

DCS/TASC/Advanced Support Team
Center for Information Technology
National Institutes of Health

Summer 2001





SAS Programming Fundamentals II 

This course builds on skills taught in (212) - SAS Programming Fundamentals I. Its focus is on
expanding Base SAS programming skills by including the DATA step management
components of the Base SAS software...how to manipulate SAS data set effectively. Once you
have completed both courses(212) and (213) you have a strong programming foundation for
becoming a successful Base SAS programmer.

Many software applications are either totally menu driven, or totally command driven ("enter a
command-see the result"). Base SAS software is neither totally menu driven or totally
command driven. With Base SAS software, you use statements to write a series of instructions
called a SAS program.

MODULE 4:  DATA STEP STATEMENTS

• Assignment Statement
• Identify Arithmetic Operators
• Interpret Messages in the SAS Log
• SAS Functions—SUM, MEAN, SUBSTR, TRIM, MDY, MONTH, DAY, YEAR
• RETAIN and SUM Statements

MODULE 5:  CONDITIONAL STATEMENTS

• IF-THEN Statement
• Comparison, Logical and IN Operators
• IF-THEN/ELSE statements
• Subsetting IF Statement
• IF-THEN/DELETE Statement
• OUTPUT Statement
• LENGTH Statement

MODULE 6:  MANAGING SAS DATA SETS

• PROC SORT
• SET statement
• MERGE statement
• WHERE statement
• DROP =  and KEEP =    SAS Data Set Options





MODULE 4: DATA STEP STATEMENTS

• Assignment Statement

• Identify Arithmetic Operators

• Interpret Messages in the SAS Log

• SAS Functions—SUM, MEAN, SUBSTR, TRIM, MDY, MONTH, DAY,YEAR

• RETAIN and SUM Statements





1. WRITE ASSIGNMENT STATEMENTS

Purpose: Use assignment statements in the DATA step to create new variables and
to modify existing variables. Assignment statements evaluate an expression
and store the result as a variable.

General Form:       variable = expression ;
      |       |

       (A)      (B)

(A) variable names a new or existing variable

(B) expression may consist of one or more variable names, constants, function names, and
arithmetic operators

An assignment statement is one of the few statements in SAS that does not start with a
keyword.

Sample SAS statments:

Notice that these samples contain numeric, character, and date constants.

(1) WTKILO = WEIGHT * .45  ;

(2) ID = SUBSTR(ID, 2)  ;

(3) TOTAL_COST = (PPRICE * PNUM) + (CPRICE * CNUM) ;

(4) REMARKS = ‘OK’ ;

(5) SUM = SUM + 1 ;

(6) Date_of_birth = ‘04MAY67’D ;    /*a SAS date constant */

1



Sample:  Using an Assignment Statement

DATA INCOME  ;
INPUT    RENT_INCOME    EXPENSES  ;
TOTAL_INCOME  = RENT_INCOME  -  EXPENSES  ;

/*other SAS programming statements*/

DATALINES ;
6350  1200
7950  1300
;

PROC PRINT;
     TITLE 'Using An Assignment Statement' ;
RUN;

Sample Output:

Using An Assignment Statement

OBS RENT_INCOME EXPENSES TOTAL_INCOME

1 6350 1200 5150
2 7950 1300 6650

2



What happens during SAS’s “execute” phase of this particular assignment statement

TOTAL_INCOME  =  RENT_INCOME   -  EXPENSES  ;

STEP 1:  Each variable is initialized to missing at the start of the “execute” phase

PDV

_N_ _ERROR_ RENT_INCOME EXPENSES TOTAL_INCOME

. . .

STEP 2:  INPUT statement reads the first record.

PDV

_N_ _ERROR_ RENT_INCOME EXPENSES TOTAL_INCOME

1 0 6350 1200 .

STEP 3:  SAS evaluates    TOTAL_INCOME = RENT_INCOME - EXPENSES.

PDV

_N_ _ERROR_ RENT_INCOME EXPENSES TOTAL_INCOME

1 0 6350 1200 5150

STEP 4: By default, the information in the PDV is written as an observation to the SAS
data set INCOME at the end of the DATA step. The same cycle is repeated for the
next record.

3



2. IDENTIFY ARITHMETIC OPERATORS

Arithmetic Symbol Operation Sample
ASSIGNMENT statements

+

—

*

/

**

addition

subtraction

multiplication

division

exponentiation

SUM = X + Y

DIFFERENCE = X - Y ;

PRODUCT = X * 6 ;

RATE = DISTANCE/TIME ;

AREA = SIDE ** 2 ;

4



EXERCISE 1

Which of the following is an invalid SAS assignment statement? (circle)

(1)  X = A * B ;

(2)  Z = 15/0 ;     (a SAS program using division by 0 will be discussed as we move along) 

Note: SAS does compile and execute the SAS statement.  However, the SAS Log note
reads...”NOTE: Division by Zero detected at line (number) and column (number).

a second SAS Log note reads...

NOTE: Mathematical operations could not be performed in the following place: The
results of the operations have been set to missing values.

(3)  3 * (A - B) ;

(4)  DAY_WAGE = (HOUR/8) * WAGERATE;

(5)  X    SQUARE = X ** 2;

(6)  TOTAL = TOTAL + 1;

(7)  PERCENT = PERCENT * 100;

(8)  RANGE = HIGHTEMP - LOWTEMP;

(9)  D = A/B * 100

5



2.1 Missing values in an assignment statement

Should the value for a variable in an expression be missing, the resulting value will also be
missing.

Sample Program:

DATA MISSING ;
INPUT  A   B  ;
TOTAL =  A  +  B ;

DATALINES;
2  .
3  5
;

PROC PRINT ;
TITLE 'Effect of missing values on an ASSIGNMENT statement' ;

RUN;

Sample SAS Log:

 1       DATA MISSING ;
 2         INPUT A  B  ;
 3         TOTAL =  A  +  B ;
 4       DATALINES;

 NOTE: Missing values were generated as a result of performing
an operation on missing values.
Each place is given by: (Number of times) at (Line):
(Column)1 at 3:13

 NOTE: The data set WORK.MISSING has 2 observations and 3 variables.
 NOTE: The DATA statement used

cpu time 0.06 CPU seconds.
 7       ;
 8       PROC PRINT ;
 9         TITLE 'Effect missing values on an ASSIGNMENT statement';
 NOTE: The PROCEDURE PRINT printed page 1.
 NOTE: The PROCEDURE PRINT used:

cpu time 0.02 CPU seconds.

Sample Output:

        Effect missing values on an ASSIGNMENT statement

                       OBS    A    B    TOTAL

1     2    .     .
2     3    5     8

6



3.  INTERPRET MESSAGES IN THE SAS LOG

3.1  Variable is Declared Character and Used as Numeric

Sample Program:

DATA DEFCHAR ;
    INPUT   CODE   $3.   ;
    CODE = CODE + 1 ;
DATALINES;
624
239
;

PROC PRINT ;
RUN;

Sample SAS Log:

 1          DATA DEFCHAR ;
 2             INPUT CODE $3. ;
 3             CODE = CODE + 1 ;
 4          DATALINES;

 NOTE: Character values have been converted to numeric values at
        the places given by:
        (Number of times) at (Line):(Column).
        2 at 3:11
 NOTE: Numeric values have been converted to character values at
       the places given by:(Number of times)

at (Line):(Column). 2 at 3:16
 NOTE: The data set WORK.DEFCHAR has 2 observations and 1 variables.
 NOTE: The DATA statement used:

cpu time 0.06 CPU seconds.

 7          ;
 8          PROC PRINT ;
 NOTE: The PROCEDURE PRINT printed page 1.
 NOTE: The PROCEDURE PRINT used:

cpu time 0.02 CPU seconds.

Sample Output:
                          The SAS System

                           OBS    CODE

                            1     625
                            2     240

7



3.2 Division by Zero

Sample Program:

DATA  DIVZERO ;
   INPUT  X  Y ;
   Z = X/Y ;
DATALINES ;
4 1
6 0
;
PROC PRINT;
RUN;

Sample SAS Log:
 1          DATA DIVZERO ;
 2             INPUT X Y ;
 3             Z = X/Y ;
 4          DATALINES;

 ERROR: Division by zero detected at line 3 column 9.
 RULE:      ----+----1----+----2----+----3----+----4----+----5---
 6          6 0
 X=6 Y=0 Z=. _ERROR_=1 _N_=2
 NOTE: Mathematical operations could not be performed at the
       following places. The results of the operations have been
       set to missing values.
       Each place is given by:
       (Number of times) at (Line):(Column).
       1 at 3:9
 NOTE: The data set WORK.DIVZERO has 2 observations and 3
       variables.
 NOTE: The DATA statement used 0.06 CPU seconds.

 7          ;
 8          PROC PRINT ;
 NOTE: The PROCEDURE PRINT printed page 1.
 NOTE: The PROCEDURE PRINT used

cpu time 0.02 CPU seconds.
 ERROR: Errors printed on page 1.

Sample Output:
                        OBS    X     Y     Z

1 4 1 4
2 6 0 .

8



EXERCISE 2

(1) DATA REPORT;
   INPUT  GRANT  TOTAL1  TOTAL2;
   TOTAL = TOTAL1 + TOTAL2;

/*later we will discuss usage of both the RETAIN and Assignment statements*/
DATALINES;
65  40  53
86  70   .
;
PROC PRINT;
RUN;

Sample SAS Log:

1          DATA REPORT;
2            INPUT GRANT TOTAL1 TOTAL2;
3            TOTAL = TOTAL1 + TOTAL2;
4          DATALINES;
NOTE: Missing values were generated as a result of performing

an operation on missing values.
Each place is given by:
(Number of times) at (Line):(Column).
1 at 3:18

NOTE: The data set WORK.REPORT has 2 observations and 4
      variables.
NOTE: The DATA statement used

cpu time 0.06 seconds.

7          ;
8          PROC PRINT;

NOTE: The PROCEDURE PRINT printed page 1.
NOTE: The PROCEDURE PRINT used 0.02 CPU seconds.
NOTE: The SAS session used:

cpu time 0.24 seconds.

Examine the following SAS output.  Why is SAS generating missing values? 

The SAS System

OBS    GRANT    TOTAL1    TOTAL2    TOTAL

1 65 40 53 93
2 86 70 . .

9



 (2) DATA AVERAGE;
      INPUT  TIME1  TIME2  TIME3  N  ;
      AVG = (TIME1 + TIME2 + TIME3)/N;
DATALINES;
14.5  18  23.3   3
13.0  13.2  15   3
18.4  21  25.5   0
;

PROC PRINT;
RUN;

What is causing an error message in the following SAS Log ?

1          DATA AVERAGE;
2            INPUT TIME1 TIME2 TIME3 N ;
3            AVG=(TIME1+TIME2+TIME3)/N ;
4          DATALINES;

ERROR: Division by zero detected at line 3 column 26.
RULE:      ----+----1----+----2----+----3----+----4----+----5---
7          18.4 21 25.5 0
TIME1=18.4 TIME2=21 TIME3=25.5 N=0 AVG=. _ERROR_=1 _N_=3
NOTE: Mathematical operations could not be performed at the
      following places. The results of the operations have been
      set to missing values.
      Each place is given by:
      (Number of times) at (Line):(Column).
      1 at 3:26
NOTE: The data set WORK.AVERAGE has 3 observations and 5
      variables.
NOTE: The DATA statement used:

cpu time 0.06 seconds.

8          ;
9          PROC PRINT;
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: The PROCEDURE PRINT used:

cpu time 0.03 seconds.
ERROR: Errors printed on page 1.

                         The SAS System

          OBS    TIME1    TIME2    TIME3    N     AVG

           1      14.5     18.0     23.3    3    18.6
           2      13.0     13.2     15.0    3    13.7
           3      18.4     21.0     25.5    0      .

10



4.  SAS Functions

Purpose: The SAS System contains functions which perform specific
calculations. Functions operate across variables within the observations in a SAS
data set.

General Form:   variable = functionname (argument1, ..., argumentn) ;
| | |

(A) (B) (C)

(A) variable result of the function

(B) functionname keyword for a particular function

(C) argumentn any SAS expression

11



4.1 SUM Function

Purpose: The SUM function adds its non-missing arguments.

General Form: SUM(argument1,. . ., argumentn) ;

Sample: To illustrate the difference between the usage of the SUM function versus the
addition operator in the ASSIGNMENT statement when missing values are present.

DATA   Sample ;
   INPUT X1  X2  X3 ;

TOTAL1 = SUM(X1, X2,X3) ;

/* the expression SUM(X1, X2, X3) is equivalent to the expression SUM(OF X1-X3)  */

/* variables which start with a common prefix and end with consecutive numbers can be
part of a numbered range list. The numbers can start and end anywhere as long as the
number sequence between is complete. */

   TOTAL2 = X1 + X2 + X3 ;

DATALINES;
1   5   10
2   .    4
;

PROC PRINT ;
  Title  ‘Notice the difference between the values TOTAL1  and  TOTAL2’ ;
RUN;

Sample 2 - SAS Output: 

Notice the difference between the values  TOTAL1  and  TOTAL2

OBS     X1    X2   X3    TOTAL1    TOTAL2

1 1 5 10 16 16
2 2 . 4 6 .

12



4.2 INPUT Function - Explicit Character-to-Numeric Conversion

The INPUT function converts character data values to numeric values.

General Form:   INPUT (source, informat) ;

•  source indicates the character variable, constant, or expression to be converted to a
numeric value

•  a numeric informat must be specified

13



Suppose: The variable PayRate is stored in a SAS data set as a character variable. You are
asked to determine the salary. Multiple variable PayRate by the variable Hours.

Given: PayRateHours

10 88
8 200

Sample Program:

Data   Convert_ Char_to_Numeric   ;
    INPUT     PayRate   $  Hours  ;
    New_PayRate   = INPUT(PayRate, 2.) ;
    Salary  =  New_PayRate  *  Hours ;
DATALINES;
10 88
8  200
;

PROC PRINT;
RUN;

/*Alternatively, you may combine into one Assignment statement to accomplish the task*/

Data   Convert_ Char_to_Numeric   ;
    INPUT     PayRate   $  Hours  ;
    Salary  =   INPUT(PayRate, 2.)    *  Hours ;
DATALINES;
10 88
8  200
;

14



4.3 PUT Function - Explicit Numeric-to-Character Conversion

The PUT  function converts numeric data values to character values.

General Form:   PUT(source, format) ;

•  source indicates the numeric variable, constant, or expression to be converted to a character
value

•  a format matching the data type of the source

15



Suppose: You were asked to create a new character variable Assignment. This new variable
would be the result of concatenating the values of the variables
Site and Department.

Given: Department Site

PURH    57
BK    34

Sample Program:

Data   Convert_ Numeric_to_Character   ;

INPUT     Department        $      Site    ;

Newsite =PUT(Site, 2.) ;
  /*this statments converts the numeric variable Site to a character variable Newsite */

Assignment = Newsite  ||  ‘/’  || Department  ;

DATALINES;
PURH 57
BK 34
;

PROC PRINT;
RUN;

Sample Output:

Obs Department Site Newsite Assignment

1 PURH 57 57 57/PURH
2 BK 34 34 34/BK

16



/*Alternatively, you may combine into one Assignment statement to accomplish the task*/

Data   Convert_ Numeric_to_Character   ;

INPUT     Department        $      Site    ;

Assignment = PUT (Site, 2.) || ‘/’ || Department   ;

DATALINES;
PURH 57
BK 34
;

PROC PRINT;
RUN;

Sample Output 2:

Obs Department Site Assignment

1 PURH 57 57/PURH
2 BK 34 34/BK

17



4.4 MEAN Function

Purpose: The MEAN function averages its non-missing arguments.

General Form: MEAN(argument1,. . .,argumentn) ;

You may use the numbered range lists in an abbrevated form...    MEAN(OF varlist) ;

Sample 1: M = MEAN(2, 6, 7) ;

Sample 2: Illustrating the difference between usage of the MEAN function in a SAS
expression and the usage of addition/division operators in a SAS expression when
missing values occur.

DATA AVG ;

   INPUT X1  X2  X3  X4 ;

   AVG1 = MEAN(OF X1-X4)  ;        /*  or   AVG1 = MEAN(X1, X2, X3, X4);   */

/* The expression AVG1 = MEAN(OF X1-X4)  is equivalent to  AVG1= MEAN(X1, X2, X3, X4)  */

AVG2 = (X1 + X2 + X3 + X4)/4  ;

DATALINES;
2   6   7   .
;

PROC PRINT ;
   Title ‘Notice the difference between the values AVG1 and AVG2’  ;

Title2 ‘Usage of the MEAN function in a SAS expression versus usage of the’  ;
Title3 ‘ + or - operators in a SAS expression when missing values occur. ’  ;

RUN;

Sample 2 - SAS  Output:

Notice the difference between the values AVG1 and AVG2
Usage of the MEAN function in a SAS expression versus usage of the
+ or - operators in a SAS expression when missing values occur. 

OBS    X1    X2    X3    X4    AVG1    AVG2

1 2 6 7 . 5 .

18



4.5 TRIM Function is a character-handling function

Purpose: The TRIM function removes trailing blanks from a character string.
TRIM function is handy for making concatenated strings look more
presentable.

General Form: TRIM(string) ;

The TRIM function is often used in conjunction with the concatenation operator (||).
The concatenation operator joins character strings and has the general form:

string1 || string2

where string1 and string2 are character variables, constants, or expressions.

Note 1:

The concatenation operator (||) enables you to append character variables and/or
character constants to each other.

Trailing blanks are not trimmed from the operands.

For instance, the value “East” stored in a variable with a length of 10 will contribute six blanks
to the concatenated string. The TRIM function eliminates this unwanted “white  space.”

Note 2: 

On the keyboard the || symbol is the uppercase of the back-slash.

19



Sample Program:   TRIM  function

DATA   NAMES  ;

INPUT   FNAME   $   LNAME   $  ;

     /* Used several Assignment statements below: */

     _PART1  =   FNAME   ||  LNAME  ;

     _PART2   =   TRIM(FNAME)  ||  LNAME  ;

      FULL_NAME   =   TRIM(FNAME)  ||  ’  ‘  || LNAME   ;

DATALINES;
HARRY   THOMAS
;

PROC PRINT ;
RUN;

Sample Output:

  OBS  FNAME    LNAME      _PART1            _PART2        FULL_NAME

   1   HARRY    THOMAS    HARRY   THOMAS    HARRYTHOMAS    HARRY THOMAS

20



  /* Alternatively, you may combine into one Assignment statement to accomplish the task  */

  DATA NAMES ;

          INPUT    FNAME     $    LNAME     $    ;

 FULL_NAME   =   TRIM(FNAME   ||  ‘ ‘  ||  LNAME   ;   

DATALINES;
HARRY   THOMAS
;

PROC PRINT ;
RUN;

Sample Output:

  OBS  FNAME    LNAME      FULL_NAME

   1   HARRY    THOMAS     HARRY THOMAS

21



4.6 SUBSTR Function is a character-handling function

Purpose The SUBSTR function extracts part or all of a character string.

General Form: SUBSTR(string, start, length) ;
| | |
(A) (B) (C)

(A) string string and character string are used interchangeably and refer to any
of character variables, constants, or expressions.

(B) start extraction begins in the specified ‘start’ position from the left and
continues to the right for the specified ‘length’

(C) length the number of characters to extract. If length is omitted or exceeds string’s
length, the remainder of the character string is extracted.

22



Sample program 1 -  SUBSTR  function:

DATA  Substring_Program_1  ;

  INPUT    FirstName   $   1-9       @13  Middle_Name   $9.   ;

 Middle_Initial  =  SUBSTR(Middle_Name,1,1) ;

/* in this example extraction of a string starts with the 1st character in the field and continues for
1 position*/

DATALINES;
Elizabeth    Marie
Richard         Lee
Brian          Thomas
;

PROC PRINT ;
RUN;

Sample output:

First  Middle_  Middle_
Obs Name  Name  Initial

   1 Elizabeth  Marie  M
   2 Richard  Lee  L
   3 Brian  Thomas  T

23



Sample program 2  -   SUBSTR function:

DATA   Substring_Program_2   ;

INPUT     Variable_1      Unknown_ID     $5.    ;

ID_variable  =  SUBSTR(Unknown_ID,3,3) ;

/*extracting a character string begins at the 3rd character in the original string
and from that point extracts the following 3 positions  */

DATALINES;
10 SA052
20 MA011
;

PROC PRINT ;
RUN;

Sample output:

OBS Variable_1 Unknown_ID ID_variable

1 10 SA052 052
2 20 MA011 011

24



4.7 Date Functions

Sometimes dates are supplied in a form not amenable to any of the SAS date informats.
(You studied SAS date informats in the course SAS Programming Fundamentals I.
Certain situations require date calculations. These date creation activities are often handled by
the SAS date functions.

4.5.1 MDY Function

Purpose: The MDY function creates a SAS date from separate month, day, and year
arguments.

General Form: MDY(month,day,year) ;

SAS numeric variables or constants represent month, day, and year, respectively.
A missing or out-of-range argument creates a missing value.

Sample:

DATA TEST ;
  INPUT ID 1-5  MNTH 7-8  DY 10-11  YR 1-2 ;
  NEWDATE = MDY(MNTH,DY,YR) ;
DATALINES;
91215 12 24
;

PROC PRINT ;
/* Without a FORMAT statement, SAS writes 11680. This integer 11680 represents

the total number of days between Dec. 24, 1991  and  Jan. 1, 1960   */
RUN;

Sample Output:

 OBS       ID     MNTH DY YR    NEWDATE

  1     91215 12 24 91 11680

25



4.7.2 MONTH, DAY, YEAR Functions

Using SAS functions to extract month, day, and year from a SAS date value.

FUNCTION

MONTH

DAY

YEAR

PURPOSE

Returns the numeric value of the
month (1-12)

Returns the day of the month

Returns the year in 4 digits

GENERAL FORM

MONTH(SASdate)

DAY(SASdate)

YEAR(SASdate)

26



Sample - YEAR, MONTH, and DAY functions program

DATA DOB ;
   DOB = ‘07JAN1964’D ;    /* this is a SAS date constant  */
   YR = YEAR(DOB) ;
   MON = MONTH(DOB) ;
   DAY = DAY(DOB) ;

PROC PRINT ;
RUN;

Sample Output:

OBS     DOB     YR     MON    DAY

1      1467   1964       1      7

27



5.  RETAIN, ASSIGNMENT and SUM STATEMENTS

5.1 RETAIN Statement

Purpose: The RETAIN statement causes a variable whose value is assigned by an
INPUT or ASSIGNMENT statement to retain its value from one iteration of
the DATA step to the next. Without a RETAIN statement, the SAS System
automatically sets these variables to missing before each iteration of the
DATA step.

General Form: RETAIN variable  [initial-value];
|

(A)

(A) initial-value variable(s) listed before an initial-value will start the first iteration
of the Data step with that value

The RETAIN statement can appear anywhere in the DATA step.

The RETAIN statement may be desirable in some situations. For instance, you
may want to compute a running total for one or more variables. But by default SAS
automatically resets all values to missing at each iteration of the DATA step. In such a case
you want the value for the running total to be retained at the start of each iteration.

Basically...

1. To provide initial value of your choice for the variable(s)

2. To prevents resetting value to missing for each iteration of the Data Step

28



Sample 1:  Using the RETAIN statement and the ASSIGNMENT statement

DATA  TOTCOST ;
   RETAIN TOTAL 0 ;        /*    TOTAL is initialized to 0   */
   INPUT COST ;
   TOTAL = TOTAL + COST ;     /*    TOTAL keeps a ‘running sum’   */
DATALINES;
1000
1200
;

PDV Before Reading the First Data Line

TOTAL       COST

 0

PDV Before Reading the 2nd Data Line

TOTAL       COST

 1000

PDV After Reading the First Data Line

TOTAL       COST

    1000         1000

PDV After Reading the 2nd Data Line

TOTAL       COST

    2200          1200

Before the first execution of the DATA step, the variable TOTAL is initialized to 0.  Then for
all subsequent executions, the RETAIN statement signals to SAS that the variable TOTAL is
not initialized to missing.  Therefore, you can accumulate totals using the RETAIN statement
and the assignment statement as long as the variable COST is not missing.  Should COST be
a missing value then the value for TOTAL will also be missing.

29



Sample 2:  Using the RETAIN statement and the ASSIGNMENT statement

DATA DAYS ;

   RETAIN   TODAY   ‘28FEB92’D ; /* the internal value for TODAY is retained*/
/* ‘28FEB92’D  is a date constant */

   INPUT   DATE    MMDDYY6. ; /* for each iteration of the DATA step*/

   Number_Days = TODAY - DATE ;

DATALINES ;
010192
021586
;

PROC PRINT ;
RUN;

Sample Output:

OBS TODAY DATE Number_Days

1 11746 11688 58
2 11746 9542 2204

30



5.2 SUM    Statement

Purpose: The Sum statement is a special SAS statement which also retains
the variable’s value from the previous iteration of the DATA step. SAS
recognizes the first variable in the SUM statement as a retained numeric
variable. Retention is implied. But you use it for the special cases where you
simply want to cumulatively add the value of an expression to a variable.

General Form:  variable + expression ;
| |

(A) (B)

(A) variable This variable keeps the ‘running’ sum. By default this numeric variable is
given an initial value of zero.

(B) expression The expression is evaluated and the result is added to the value
of the variable.

Sample program:

DATA ADDIT ;
  INPUT COST ;
  TOTAL + COST ;

/* by definition TOTAL represents the variable and COST represents the expression*/

DATALINES;
1000
1200
.
1500
;

PROC PRINT ;
RUN;

Sample output:

OBS    COST    TOTAL

1     1000     1000
2     1200     2200
3        .     2200
4     1500     3700

31



EXERCISE  3    (computer-assisted )

1. Write a DATA step that reads the following data lines.
BOB    34  31  22
JAN    23  22  18
MATT   12  43  25
MARY   15  51  40

(1a) Use the following INPUT statement in the DATA step.
INPUT     NAME  $      GR1     GR2    GR3 ;

(1b) Create a new variable TOTGR which is the sum of GR1,  GR2 times 5,  and GR3.

(1c) Create another variable AVGGR which is the average of GR1,  GR2 times 5,
and GR3.

2. Use PROC PRINT to list the observations and variables created in the
  DATA step(above).

3. Write another DATA step that reads company names and phone numbers.

DATA  PHONES ;
  INPUT    COMPANY   $  1-5   PHONE_NUMBER   $   8-14;

/*your SAS statements and answers to questions (3a) and (3b) will be
entered here, that is, immediately after the INPUT statement and before
the DATALINES statement*/

DATALINES;
C & P  4651500
PEPCO  5401800
WSSC   8451000
;

(3a) Using the SUBSTR function, write ASSIGNMENT statements, and create two  new
variables.

The variable EXCHANGE will represent the first three digits of PHONE_NUMBER
and the variable EXTENSION will represent the last four digits of
PHONE_NUMBER
NOTE ! You determine the the values for the ‘start’ and the ‘length’ values in  the

SUBSTR function by simply counting the number of digits or characters in a
specified field.

(3b) Create a new variable NEWPHONE_NUMBER (...insert a hyphen between the
three digit exchange and the four digit extension).

(4) Use PROC PRINT to display the observations and variables in the data set PHONES
(5) Check the SAS log and the SAS output. Is this the desired SAS output ?

32



EXERCISE   4     (computer-assisted)

1.   Write a DATA step that reads the following data lines. Each data line consists  of
a patient’s identification number, followed by the month, day and year that these
patients were admitted to a hospital.
1069  12  10  81
1200  5  8  82
1180  6  14  82

(a) Use the following INPUT statement in the DATA step
INPUT  PATID  $   ADMISSION_MONTH    ADMISSION_DAY   ADMISSION_YEAR  ;

(b) Write an ASSIGNMENT statment to create a new variable ADMISSION_DATE

2.   Use PROC PRINT to display the observations and variables in the data set.
           You may also include this Format statement to display a “real” date

Format      admission_date    MMDDYY8.    ;

3.   Write another DATA step and read the variables STUDENT,  START_DATE, and
  GRAD_DATE.

START_DATE represents the date a student started degree
GRAD_DATE represents the date a student completed degree

DATA CLASS;
   INPUT  STUDENT $

@6 START_DATE MMDDYY8.
@14 GRAD_DATE MMDDYY8. ;

/*count!...in this example the starting positions for the
  date(s) are in col. 6 and 14 */

DATALINES;
1180 9/14/87  6/5/91
1069  9/8/87 5/20/91
1200 8/24/82 5/29/86
;

(a)  Create a new variable Number__Years which represents the number of years the
 student attended school.

4.   Use PROC PRINT to display the observations and variables in this data set.

PROC PRINT ;
      FORMAT   START_DATE   GRAD_DATE   MMDDYY8.  ;

   /* Format statement associates the  MMDDYY8.  date format with the
   variables START_DATE  and  GRAD_DATE. */

RUN;

33



EXERCISE 5    (computer-assisted)

(1)  Write a DATA step which creates a SAS data set GRANTS

DATA GRANTS ;
INPUT  INSTITUT $  @7 AMOUNT  COMMA7. ;

DATALINES;
NICHD 120,000
NIAID 220,000
NCI   180,000
;

1a) Write a RETAIN statement which initializes a new variable TOTAL1.

1b) Write an ASSIGNMENT statement.
Accumulate totals(that is, ‘a running’ sum) for the variable AMOUNT, and assign the
totals to the new variable TOTAL1.

1c) Write an SUM statement.
Accumulate totals(that is, ‘a running’ sum) for the variable AMOUNT, and allow a new
variable, TOTAL2, to retain the ‘running’ sum or totals for the variable AMOUNT.

(2)  Use PROC PRINT to list the observations and variables in this data set.

PROC PRINT ;
FORMAT  AMOUNT  TOTAL1   TOTAL2   COMMA7.   ;
/*  Format statement associates the  COMMA7.   format with the variables

AMOUNT, TOTAL1 and TOTAL2   */
RUN;

34



MODULE 5: CONDITIONAL STATEMENTS

• IF-THEN Statement

• Comparison, Logical and IN Operators

• IF-THEN/ELSE statements

• Subsetting IF Statement

• IF-THEN/DELETE Statement

• OUTPUT Statement





6.  IF-THEN STATEMENT

Purpose:     Used in the DATA step to conditionally perform statements.

General Form:      IF  condition  THEN  statement;
| |

(A) (B)

(A) condition an expression that SAS evaluates as true or false

(B) statement an executable statement

If the condition is true then SAS executes the statement.
If the condition is false SAS ignores the statement.

Samples:

(1) IF SEX = ‘F’  THEN  COUNT + 1;

(2) IF AGE = 10  THEN  GROUP=’A’;

(3) IF SEX = ’  ‘  THEN  MISSING + 1;

(4) IF AGE = .   THEN  AGE=0;

31



7. COMPARISON, LOGICAL AND IN OPERATORS

7.1 Comparison Operators

KEYWORD SYMBOL MEANING

EQ = equal to

LT < less than

GT > greater than

NE ^= not equal to

LE <= less than or equal to

GE >= greater than or equal to

Samples:

(1)  IF  AGE  >=   50  THEN  AGE = 39;

(2)  IF  SEX  EQ  ‘M’  THEN  MALE = 1;

(3)  IF  TEMP  LT  32  THEN  WEATHER = ’COLD’;

32



7.2 Logical Operators

KEYWORD SYMBOL                 MEANING

AND & If both expressions linked by AND are true, then the
result is true; otherwise, the result is false.

                                                                expression1   expression2    result

T T T
T F F
F T F
F F F

OR | If either of the expressions linked by OR is true
then the result is true; othewise, the result is
false.

                                                               expression1   expression2    result

T T T
T F T
F T T
F F F

NOT ^ The result of putting NOT in front of an expression whose value is
false is true.  The result is true if the value of the expression is
false.

                                                               expression     result

T F
F T

33



Samples: Using logical operators in conditional statements

(1) IF  STATE = ‘NC’  OR  STATE = ‘SC’  OR  STATE = ‘VA’  THEN  REGION = ’E’;

(2) IF  STATE = ‘NC’  AND  CITY = ‘RALEIGH’  THEN  STCODE = 3;

(3) IF  SCORE >= 80  AND  SCORE < 90  THEN  GRADE = ‘B’;

is equivalent to

IF  80 <= SCORE < 90  THEN  GRADE  = ‘B’;

(4) IF  AGE > 30  AND  MARITAL = ‘M’  THEN  CODE = ‘5’;

(5) IF  SEX EQ ‘F’  &  AGE LT 14  THEN  GROUP = 2;

34



7.3 IN Operator

Purpose: The IN operator is used to determine whether a variable’s value is among a
list of values.

General Form:          IN (value1, value2, ... , valuen)

Samples:

(1)  IF  FIPSCODE  IN (6,16,32,41,53)  THEN  REGION = ‘SE’;

(2)  IF  STATE   IN (‘NC’,’SC’,’VA’)  THEN REGION = ‘E’;

35



8. IF-THEN/ELSE STATEMENT

Purpose:          Used in the DATA step to conditionally perform statements.

General Form:      IF  condition  THEN  statement1;
ELSE IF condition THEN statement2;

                        ELSE IF condition THEN statement3;
ELSE statement4;

If a condition is true, SAS executes statement1. If a condition is false, SAS ignores
statement1. SAS continues this same logical process for the other IF-THEN/ELSE series.

Notice the final ELSE statement(above).
Sometimes the last ELSE statement in a series is a little different, containing just a
statement, with no IF or THEN. An ELSE of this kind becomes a default which is
automatically executed for all observations failing to satisfy any of the previous IF-
THEN/ELSE statements. You can only have one of these statements, and it must be the
last in the IF-THEN/ELSE series.

Samples:

(1) IF  70 <= TEST <= 100  THEN  SCORE = ‘PASS’;
ELSE  SCORE = ‘FAIL’;

One of the most common uses of IF-THEN or IF-THEN/ELSE statements is for
grouping observations. Perhaps a variable has too many different values and you want
to run an analysis based on specific groups of interest.

(2) IF  0 <= AGE <= 20  THEN  AGEGRP = 1;
ELSE IF  20 < AGE <= 40  THEN  AGEGRP = 2;
ELSE IF  40 < AGE <= 60  THEN  AGEGRP = 3;
ELSE IF  AGE > 60  THEN  AGEGRP = 4;
ELSE AGEGRP = 0;

Advantages of the IF-THEN/ELSE over a simple series of IF-THEN:

1) It is more efficient, using less computer time; once an observation satisfies a
condition, SAS skips the rest of the series.

2) ELSE logic ensures that your groups are mutually exclusive so you don’t accidentally
have an observation fitting into more than one group.

36



EXERCISE  6 (a written exercise)

(1) Suppose we have the data lines below:
FNAME    SEX  AGE   HT    WT

PAUL      M   27    72   140
JENNIFER  F   28    64   135
RENEE     F   35    54   128
MANUEL    M   35    60   125
TONI      M   32    68   130

Write IF statements:

(a) assign a value of  ‘NO’  to a new variable named ALLOWED if the age is at
least 31.

(b) change the first name TONI to TONY.

(c) assign a value of  ‘A’  to a new variable GROUP if the first name is PAUL,
RENEE  or  MANUEL.

(d) create a new variable W according to the value of  WT.  If WT is between 10
and 130, set W to ‘130 OR LESS’; otherwise, set it to ‘OVER 130’.

(2)  Rewrite any of the following IF statements if they are not valid:

(a) IF   SEX  EQ  ‘M’   THEN   CODE   EQ  1;

(b) IF  VEHID    IN (1,3,4)   THEN  TRUCK + 1 ;

(c) IF   (STATE = ‘ME’   AND    CITY = ‘PORTLAND’)   AND
(STATE = ‘NJ’   AND   CITY  =  ‘TRENTON’)   THEN   COUNT + 1;

(d) IF   MEAN (OF DRUG1-DRUG5)  >  45   THEN   LEVEL=HIGH;

37



9. SUBSETTING IF STATEMENT

Purpose:        To select a subset of observations.

General Form:        IF condition;

If the condition is true, SAS continues processing the following statements in the DATA
step for the current observation.

If the condition is false, then no further statements are processed for that observation;
that observation is not added to the SAS data set being created; and SAS moves on to
the next observation. Therefore, control is returned to the beginning of the DATA
step.

You can think of the subsetting IF as a kind of on-off switch. If the condition is true,
then the switch is on and the observation is processed. If the condition is false, then that
observation is turned off

Sample:

DATA MALE;
   INPUT  FNAME $  SEX $ AGE  HT  WT;
   IF SEX = ‘M’;
DATALINES;
PAUL      M 27 72  140
JENNIFER  F 28 64  135
RENEE     F 35 54  128
MANUEL    M 35 60  125
TONY      M 32 68  130
;

PROC PRINT;
RUN;

Sample Output:

OBS   FNAME    SEX  AGE   HT    WT

 1    PAUL      M   27    72   140
 2    MANUEL    M   35    60   125
 3    TONY      M   32    68   130

38



10. IF-THEN/DELETE STATEMENT

Purpose:          To select a subset of observations.

General Form:            IF  condition  THEN  DELETE;
|

(A)

(A) DELETE stops processing the current observation when the condition is true.
The observation is not written to the SAS data set. Control is returned
to the beginning of the DATA step.

While the subsetting IF statement tells SAS which observations to include, the DELETE
statement tells SAS which observation to exclude.

Generally, you use the DELETE statement when it is easier to specify a condition for
excluding observations. (Easier...meaning you would have to do a lot less typing to
specify the condition)

Sample 1:  Using the IF-THEN/DELETE Statement

DATA MALES;
   INPUT  FNAME $   SEX $   AGE   HT   WT;
   IF  SEX = ‘F’  THEN  DELETE;
DATALINES;
PAUL      M 27 72  140
JENNIFER  F 28 64  135
RENEE     F 35 54  128
MANUEL    M 35 60  125
TONY      M 32 68  130
;

PROC PRINT;
RUN;

Sample Output 1:

OBS   FNAME    SEX  AGE   HT    WT

 1    PAUL      M   27    72   140
 2    MANUEL    M   35    60   125
 3    TONY      M   32    68   130

39



Sample 2:   Using the IF-THEN/DELETE Statement

DATA PRODUCT;
   INPUT DEPT   $   UNITS   COST  ;
   IF  UNITS <= 0   OR   COST <= 0  THEN  DELETE;
   UNITCOST = COST/UNITS;
DATALINES;
CCB  10  525.00
LSM  50  -6.00
LAS  5  100.00
PCB  0  3.00
OD  1 15.00
;

PROC PRINT;
RUN;

Sample Output 2:

OBS   DEPT   UNITS   COST   UNITCOST

 1    CCB      10     525     52.5
 2    LAS       5     100     20.0
 3    OD        1      15     15.0

40



11. OUTPUT STATEMENT

Purpose: When an OUTPUT statement is used in a DATA step, there is no automatic
output at the end of the DATA step.  Rather, the OUTPUT statement
controls when the observations are written to the output SAS data set.
After an OUTPUT statement, control does not return to the start of the
DATA step; SAS continues processing any other statements in the step.

General Form:        OUTPUT sasdsname;
|

(A)
(A) sasdsname SAS data set(s) must be named in the DATA statement.

Sample 1:   Using the OUTPUT statement to write to multiple SAS data sets

DATA  FEMALES   MALES  ;
   INPUT  FNAME  $    SEX  $    AGE    HT    WT;
   IF  SEX = ‘M’  THEN   OUTPUT   MALES;
   ELSE  IF  SEX = ‘F’  THEN   OUTPUT  FEMALES;
DATALINES;
PAUL  M  27  72  140
JENNIFER  F  28  64  135
RENEE  F  35  54  128
MANUEL  M  35  60  125
TONY  M  32  68  130
;
PROC PRINT   DATA=FEMALES;

TITLE  ‘FEMALES’;
PROC PRINT   DATA=MALES;

TITLE  ‘MALES’;     RUN;

Sample Output 1:

FEMALES

OBS   FNAME    SEX  AGE   HT    WT

 1    JENNIFER  F    28   64   135
 2    RENEE     F    35   54   128

MALES

OBS   FNAME    SEX  AGE   HT    WT

 1    PAUL      M   27    72   140
 2    MANUEL    M   35    60   125
 3    TONY      M   32    68   130

41



Sample 2:  OUTPUT statement to generate several observations from one

Given the following variables and datalines

IDNUM SCORE1 SCORE2 SCORE3

21573148            82      91      78
13429576                      91      94      88

We will use the OUTPUT statement to generate several observations from one

In this case no SAS data set is specified in the OUTPUT statement, therefore the
observation is written to the SAS data set named in the DATA statement.

DATA   OUTPUT2 ;
  INPUT IDNUM $ SCORE1 - SCORE3 ;
  TEST = 1 ;
  SCORE = SCORE1  ;
  OUTPUT;
  TEST = 2 ;
  SCORE = SCORE2 ;
  OUTPUT;
  TEST = 3 ;
  SCORE = SCORE3 ;
  OUTPUT ;

DROP SCORE1 - SCORE3 ;
DATALINES;
21573148  82  91  78
13429576  91  94  88
;

PROC PRINT ;
RUN;

Sample Output 2:

 OBS     IDNUM      TEST    SCORE

 1     21573148      1       82
 2     21573148      2       91
 3     21573148      3       78
 4     13429576      1       91
 5     13429576      2       94
 6     13429576      3       88

                                                   

42



12. LENGTH STATEMENT

Purpose: To define the number of bytes used to store values of variables in the SAS
data set.

General Form: LENGTH variable(s)  [$]  length...  [DEFAULT=n] ;
| | |

(A) (B) (C)

(A)  $ indicates the preceding variable or variables are character
variables

(B) Length In the Windows/Mac/Unix environments this constant represents a
range from 3 to 8 for numeric variables and 1 to 32,767 bytes  for
character variables.
In the OS/390 environment this constant represents a range from 2 to
8 for numeric variables and 1 to 32,767 bytes for character variables

(C)  n changes the default number of bytes used for storing the values of
newly created numeric variables from 8 (the default length) to the
value of n(n can range from 2 to 8 or 3 to 8, depending on the host
system)

The following table shows the largest integer represented for the corresponding Length in Bytes. Limits shown
in this table are for the Windows/Mac/Unix  environments. Limits are different for the OS/390 environment. 

Length in Bytes Largest Integer Represented Exponential notation
3 8,192 2 to the 13th power
4 2,097,152 2 to the 21st power
5 536,870,912 2 to the 29th power
6 137,438,953,472 2 to the 37th power
7 35,184,372,088,832 2 to the 45th power
8 9,007,199,254,740,992 2 to the 53rd power

Example:
If you know that a numeric variable always has values between 0 and 100, you can use a
length of 3 to store the number and save space on storage.

Note:   You can safely use the LENGTH statement when the value for the variable are integers.  For non-
integers (fractional values) it is highly recommended that you do not use the LENGTH statement.
Advantages:  (1) Save space on storage

(2) Saves time in reading and writing the data.
(3) Changes SAS defaults for storing the values

43



Sample 1:

 The length of a character variable is determined by the value it takes the first time it
 appears in the DATA step.

DATA BYTES;
  INPUT   X  ;
  IF  X =  1  THEN  A =  'NO' ; /* the first time the variable A appears in the DATA step*/
  ELSE  A = 'YES'  ;
DATALINES;
2
4
1
;

PROC PRINT ;
RUN;

Sample output 1:

OBS X A

1 2 YE
2 4 YE
3 1 NO

44



Sample 2: 

To avoid the problem shown in Sample 1, use the LENGTH statement to give A a length of 3.
DATA BYTES;

LENGTH  A  $  3  ;
INPUT   X  ;
IF X = 1 THEN A = 'NO' ;
ELSE A = 'YES'  ;

DATALINES;
2
4
1
;

PROC PRINT ;

PROC CONTENTS;
RUN;

Sample Output 2:

OBS A X

1 YES 2
2 YES 4
3 NO 1

Proc content output:
CONTENTS PROCEDURE

 Data Set Name: WORK.BYTES Observations: 3
 Member Type:   DATA Variables: 2
 Engine:        V8 Indexes: 0
 Created:       10:10 Monday, September 18, 2000 Observation Length: 11
 Last Modified: 10:10 Monday, September 18, 2000 Deleted Observations: 0
 Protection: Compressed: NO
 Data Set Type: Sorted: NO
 Label:

      -----Alphabetic List of Variables and Attributes-----

               #    Variable    Type    Len    Position
               -------------------------------------------------

1 A Char 3 0
2 X Num 8 3

45



Sample 3:

DATA DEFAULT ;
  LENGTH   NAME   $  10   DEFAULT = 3 ; /* 3  bytes to store integer <=8,192  */
  INPUT   NAME  $   SCORE  ;
DATALINES;
JASON                   174
ROSA                     195
FRITZ                     188
KATHERINE        199
;

PROC PRINT ;

PROC CONTENTS;
RUN;

The LENGTH statement sets the length of the character variable NAME to 10 and changes the
default number of bytes used for storing numeric variables from 3 to 8 bytes.

Sample Output 3:
OBS NAME SCORE

                     1     JASON         174
                     2     ROSA          195
                     3     FRITZ         188
                     4     KATHERINE     199

Proc Contents output:

CONTENTS PROCEDURE
 Data Set Name: WORK.DEFAULT Observations: 4
 Member Type: DATA Variables: 2
 Engine: V8 Indexes: 0
 Created: 10:1O Monday, September 18, 2000 Observation Length:13
 Last Modified: 10:1O Monday, September 18, 2000 Deleted Observations:0
 Protection: Compressed: NO
 Data Set Type: Sorted: NO
 Label:

      -----Alphabetic List of Variables and Attributes-----

               #    Variable    Type    Len    Pos
               -----------------------------------
               1    NAME        Char     10      0
               2    SCORE       Num       3     10 

46



EXERCISE  7    (computer-assisted exercise)

It is a good practice to write-in your SAS statements in the blank spaces provided before you
enter the SAS program in the computer.

Suppose we have the following data lines which correspond to
the variables  FNAME, SEX, AGE, HT, and WT

PAUL      M   27    72   140
JENNIFER  F   28    64   135
RENEE     F   35    54   128
MANUEL    M   35    60   125
TONY      M   32    68   130

(1) Write a DATA step and create a SAS data set AGE  that includes only those
individuals 30 years old or older.

(2) Write a DATA step and create a SAS data set MALES that includes only
males over 30.

(3) Write a third DATA step and create two SAS data sets called GROUP1 and
GROUP2.
GROUP1 includes only females over 30
GROUP2 includes only males over 30.





MODULE 6: MANAGING SAS DATA SETS

• PROC SORT

• SET Statement

• MERGE Statement

• DROP  = and  KEEP =   (SAS data set options)

• WHERE Statement





13. PROC SORT

Purpose: PROC SORT rearranges the observations in a SAS data set. PROC SORT
does not generate a printed output.

General Form: PROC SORT  DATA = sasdsname1   OUT = sasdsname2 ;
BY variables ; | |

 | (A) (B)
(C)

(A) sasdsname1 names the SAS data set to be sorted...if you do not specify the DATA=
option, then SAS will use the most recently created SAS data set

(B) sasdsname2 names the output SAS data set...if you do not specify the OUT=option,
then SAS will replace the original SAS data set with the newly sorted
version

(C) variables list any number of variables in the BY statement.  By default, the
observations are sorted in ascending order of the BY variables. You
can sort the observations in descending order using the keyword
DESCENDING  before each variable you want sorted in descending
order.

There are several terms used in BY processing:

by-variable variable in a BY statement

by-value value of a by-variable

by-group observations with the same by-values

47



Sample 1:  PROC SORT with the OUT = option

PROC  SORT  DATA = ORIG  OUT = SORTORIG ;
   BY GRADE ;

SAS data set ORIG SAS data set SORTORIG

OBS GRADE NAME OBS GRADE NAME

1 A SUE 1 A SUE
2 C JANE 2 A MATT
3 B BILL 3 B BILL
4 A MATT 4 C JANE
5 D DAVE 5 D DAVE

Sample 2:  PROC SORT without the OUT = option

PROC  SORT  DATA = ORIG ;
   BY GRADE ;

SAS data set OO RR II GG SAS data set  OORRIIGG

BEFORE THE SORT AFTER THE SORT

OBS GRADE NAME OBS GRADE NAME

1 A SUE    1  A SUE
2 C JANE  2  A MATT
3 B BILL  3  B BILL
4 A MATT  4  C JANE
5 D DAVE  5  D DAVE

48



Sample 3:  PROC SORT  with  2  by-variables

PROC SORT DATA = ORIG ;
   BY GRADE NAME ;

SAS data set  OORRIIGG SAS data set  OORRIIGG

BEFORE THE SORT AFTER THE SORT

OBS GRADE NAME OBS GRADE NAME

1      A SUE 1      A MATT
2      C JANE 2      A SUE
3      B BILL 3      B BILL
4      A MATT 4      C JANE
5      D DAVE 5      D DAVE

49



14. SET STATEMENT

Purpose: The SET statement instructs SAS to read observations from one or more
existing SAS data sets rather than from data lines.
This allows you to read a SAS data set so you can add new variables, create
a subset, or otherwise modify the SAS data set.

General Form: DATA new-sasdataset;
SET sasdsname1 sasdsname2 . . . sasdsnamen ;

  |
(A)

(A) sasdsnamen A SET statement can read any number of SAS data sets.

A new program data vector is defined that contains all of the variables found in the existing
SAS data sets plus any new variables created with other SAS statements. By default,
observations are read from the first data set, then the second, and so on through all the data
sets. The SET statement is executed once for each observation in the SAS data sets.

50



Sample:

DATA NEW ;
SET OLD ;
RATIO = HT/WT ;

SAS data set OLD

FNAME SEX AGE HT WT

PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130

SAS data set NEW

FNAME

PAUL
JENNIFER
RENEE
MANUEL
TONY

SEX

M
F
F
M
M

AGE

27
28
35
35
32

HT

72
64
54
60
68

WT

140
135
128
125
130

RATIO

0.514
0.474
0.422
0.480
0.523

51



14.1 Concatenating SAS Data Sets

Purpose:   Observations from one data set are stacked with observations from the other data
set. This is useful when you want to combine SAS data sets with all or most of
the same variables but different observations.

General Form: DATA new-sasdataset;
SET sasdsname1 sasdsname2 . . . sasdsnamen ;

Sample 1:

DATA  COMMON ;
SET  NWEST  SWEST ;

SAS data set NWEST SAS data set SWEST

OBS STATE POP OBS STATE POP

1      WA  3.4    1      NM   1.1
2      OR  2.1    2      AZ   1.8

SAS data set COMMON

OBS STATE POP

1      WA 3.4
2      OR 2.1
3      NM 1.1
4      AZ 1.8

52



Sample 2:    Concatenating

DATA  UNCOMMON ;
 SET  OLD1  OLD2 ;

SAS data set OLD1 SAS data set OLD2

OBS ID X Y Z OBS A B C ID

1 1 1 9 2 1 2 2 2 4
2 2 1 3 6 2 3 5 5 5
3 3 1 4 8 3 2 9 2 6

4 2 3 4 7

SAS data set UNCOMMON

OBS ID X Y Z A B C

1 1 1 9 2 . . .
2 2 1 3 6 . . .
3 3 1 4 8 . . .
4 4 . . . 2 2 2
5 5 . . . 3 5 5
6 6 . . . 2 9 2
7 7 . . . 2 3 4

53



14.2 Interleaving SAS Data Sets

Purpose: Interleaving combines individual sorted SAS data sets into one sorted
data set.
If you have data sets that are already sorted by some common variable, then
simply stacking the SAS data sets may unsort the data sets. In such a case all you
need to do is use a BY statement with your SET statement.

General Form: DATA new-sasdataset; 
SET sasdsname1  sasdsname2 . . . sasdsnamen ;
BY variables ;

As the SET statement is executed, SAS checks the current observation in each data set and
determines which observation to process by examining the values of the BY variable(s).

Sample 1:    Interleaving

DATA  INTERLV1 ;
SET  NWEST  SWEST ;
BY  STATE ;

SAS data set NWEST SAS data set SWEST

OBS STATE POP OBS STATE POP

1      NM 1.1    1      AZ 1.8
2      WA 3.4    2      OR 2.1

SAS data set INTERLV1

OBS STATE POP

1      AZ 1.8
2      NM 1.1
3      OR 2.1
4      WA 3.4

54



Sample 2:   Interleaving - without multiple By- values

DATA  INVERLV2 ;
SET DATA1 DATA2 ;
BY  ID ;

SAS data set DATA1 SAS data set DATA2

OBS ID TREAT1 OBS ID TREAT2

1  1 A1   1  3 B1
2  2 A2   2  4 B2
3  5 A3   3  6 B3

SAS data set INTERLV2

OBS ID TREAT1 TREAT2

1  1 A1 .
2  2 A2 .
3  3 . B1
4  4 . B2
5  5 A3 .
6  6 . B3

55



Sample 3:  Interleaving with multiple ‘By-values’

DATA  INVERLV3 ;
SET DATA1   DATA2 ;
BY  NUM ;

SAS data set DATA1 SAS data set DATA2

OBS NUM TREAT1 OBS NUM TREAT2

1 1 A1 1 2 B1
2 2 A2 2 3 B2
3 2 A3 3 3 B3
4 3 A4

SAS data set INTERLV3

OBS NUM TREAT1 TREAT2

1 1 A1 .
2 2 A2 .
3 2 A3 .
4 2 . B1
5 3 A4 .
6 3 . B2
7 3 . B3

56



15. MERGE STATEMENT

Purpose: The MERGE statement is used to join corresponding observations from
two or more SAS data sets.

General Form: DATA new-sasdataset;
MERGE sasdsname1 sasdsname2 . . . sasdsnamen ;
BY variables ;

15.1 One-To-One Merging is done without a BY statement...joins observations by
position

Purpose: A one-to-one merge combines the first observation from all the data sets
in the MERGE statement into the first observation in the new data set,
the second observation from all the data sets into the second observation
in the new data set, and so on.  The new data set has the same number of
observations as the largest data set in the MERGE statement.

General Form: DATA new-sasdataset;
MERGE  sasdsname1  sasdsname2 . . . sasdsnamen ;

57



Sample 1:    One-to-One Merge...joins observations by position(e.g. by observation number)

DATA  NEW ;
   MERGE  NAMES  SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS     AGE      HEIGHT    WEIGHT

  1 PAUL M 1 27 72 140
  2 JENNIFER F 2 28 64 135
  3 RENEE F 3 35 54 128
  4 MANUEL M 4 35 60 125
  5 TONY M 5 32 68 130

SAS data set NEW

OBS NAME SEX AGE HEIGHT       WEIGHT

  1 PAUL  M    27 72 140
  2 JENNIFER  F    28 64 135
  3 RENEE  F    35 54 128
  4 MANUEL  M    35 60 125
  5 TONY  M    32 68 130

58



Sample 2:   One-to-One Merge...joins observations by position(e.g. by observation number)

DATA  NEW ;
   MERGE  NAMES  SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS    AGE   HEIGHT     WEIGHT

  1 PAUL M 1 27 72 140
  2 JENNIFER F 2 28 64 135
  3 RENEE F 3 35 54 128
  4 MANUEL M 4 35 60 125
  5 TONY M

SAS data set NEW

OBS NAME SEX AGE HEIGHT      WEIGHT

   1 PAUL M    27 72 140
   2 JENNIFER F    28 64 135
   3 RENEE F    35 54 128
   4 MANUEL M    35 60 125
   5 TONY M     .  .   .

59



Sample 3:   One-to-One Merge...joins observations by position(e.g. by observation number)

DATA  NEW ;
   MERGE  NAMES  SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME OBS SEX      AGE    HEIGHT    WEIGHT

1 PAUL 1 F 28 64 135
2 JENNIFER 2 F 35 54 128
3 RENEE 3 M 35 60 125
4 MANUEL 4 M 32 68 130
5 TONY

SAS data set NEW

OBS NAME SEX AGE HEIGHT     WEIGHT

1 PAUL F 28 64 135
2 JENNIFER F 35 54 128
3 RENEE M 35 60 125
4 MANUEL M 32 68 130
5 TONY .  .  .   .

60



Sample 4:  One-to-One Merge...joins observations by position(e.g. by observation number)

DATA  NEW ;
   MERGE  NAMES  SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT NAME

   1 PAUL M 1 27 72 SMITH
   2 JENNIFER F 2 28 64 JONES
   3 RENEE F 3 35 54 PETERS
   4 MANUEL M 4 35 60 RUIZ
   5 TONY M 5 32 68 ANGELO

SAS data set NEW

OBS NAME SEX AGE HEIGHT

   1 SMITH M 27 72
   2 JONES F 28 64
   3 PETERS F 35 54
   4 RUIZ M 35 60
   5 ANGELO M 32 68

61



15.2  Match Merging

Purpose:Match merging combines observations from two or more SAS data sets based on the
values of one or more common variables specified in the BY statement.
The SAS data sets must be sorted by the BY-variable(s).

General Form: DATA new-sasdataset;
MERGE sasdsname1 sasdsname2 . . . sasdsnamen ;
BY variable(s);

Sample 1:

DATA NEW ;
   MERGE  NAMES  SURVY ;
   BY  NAME ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT NAME

1 JENNIFER F 1 28 64 JENNIFER
2 MANUEL M 2 35 60 MANUEL
3 PAUL M 3 27 72 PAUL
4 RENEE F 4 35 54 RENEE
5 TONY M 5 32 68 TONY

SAS data set NEW

OBS NAME SEX AGE HEIGHT

   1 JENNIFER F  28 64
   2 MANUEL M  35 60
   3 PAUL M  27 72
   4 RENEE F  35 54
   5 TONY M  32 68

62



Sample 2:  Match Merge 

DATA    NEW ;
   MERGE  NAMES  SURVY ;
   BY  NAME ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT NAME

1 JENNIFER F 1 28 64 JENNIFER
2 MANUEL M 2 35 60 MANUEL
3 PAUL M 3 35 54 RENEE
4 RENEE F 4 32 68 TONY
5 TONY M

SAS data set NEW

OBS NAME SEX AGE HEIGHT

   1 JENNIFER F    28    64
   2 MANUEL M    35    60
   3 PAUL M . .
   4 RENEE F 35 54
   5 TONY M 32 68

63



Sample 3:   Match Merge - multiple BY-value(s) or “repeat” of BY-value(s)

DATA  NEW ;
   MERGE  NAMES  SURVY ;
   BY  NAME ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT NAME

1 JENNIFER F 1 28 64 JENNIFER
2 MANUEL M 2 35 60 MANUEL
3 PAUL M 3 27 72 PAUL
4 RENEE F 4 35 54 RENEE
5 TONY M 5 37 56 RENEE

6 32 68 TONY

SAS data set NEW

OBS NAME SEX AGE HEIGHT

   1 JENNIFER F    28    64
   2 MANUEL M    35    60
   3 PAUL M    27    72
   4 RENEE F    35    54
   5 RENEE F    37    56
   6 TONY M    32    68

64



Sample 4:  Match Merge -  multiple BY-value(s) or “repeat” of BY-value(s) 

DATA  NEW ;
   MERGE  NAMES  SURVY ;
   BY  NAME ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT NAME

1 JENNIFER F 1 28 64 JENNIFER
2 MANUEL M 2 35 60 MANUEL
3 PAUL M 3 27 72 PAUL
4 RENEE F 4 35 54 RENEE
5 RENEE M 5 37 56 RENEE
6 RENEE 6 32 68 TONY
7 TONY M

SAS data set NEW

OBS NAME SEX AGE HEIGHT

  1 JENNIFER F    28 64
  2 MANUEL M    35 60
  3 PAUL M    27 72
  4 RENEE F    35 54
  5 RENEE M    37 56
  6 RENEE       37 56
  7 TONY M    32 68

NOTE:  MERGE statement has more than one data set with repeat of BY values.

65



16. Using the DROP  =           or  the      KEEP  =

Purpose: The DROP=  specifies variables that SAS should not write to the output
data set.  If the option is associated with an input data set, the variables
are not available for processing. The DROP=  option can be used in
either a DATA or  PROC step. The KEEP=  SAS data set option controls
which variables are processed or written to output SAS data sets during
a DATA or PROC step.  If the option is associated with an input data set,
only those variables listed after the KEEP=  option are available for
processing.

General Form: DATA new-sasdataset;
sasdsname(DROP =   variable1  variable2 . . .  variablen) ;

or

     sasdsname(KEEP =    variable1  variable2 . . .  variablen) ;

Sample 1:

DATA  NEW ;
   SET  MALE(KEEP =  NAME  AGE)  FEMALE(KEEP =  NAME  HEIGHT) ;

SAS data set MALE SAS data set FEMALE

OBS NAME         AGE  HEIGHT OBS NAME        AGE   HEIGHT

   1 PAUL     27    72 1 JENNIFER 28 64
   2 MANUEL 35 60 2 RENEE 35 54
   3 TONY            32    68

SAS data set NEW

OBS NAME AGE HEIGHT

   1 PAUL 27 .
   2 MANUEL 35 .
   3 TONY 32 .
   4 JENNIFER . 64
   5 RENEE . 54

66



Sample 2:

DATA  NEW ;
   MERGE  NAMES  SURVY(DROP =  NAME) ;

SAS data set NAMES SAS data set SURVY

OBS NAME      SEX OBS AGE   HEIGHT   NAME

  1 PAUL M 1 27 72 SMITH
  2 JENNIFER F 2 28 64 JONES
  3 RENEE F 3 35 54 PETERS
  4 MANUEL M 4 35 60 RUIZ
  5 TONY M 5 32 68 ANGELO

SAS data set NEW

OBS NAME         SEX AGE HEIGHT

   1     PAUL M 27 72
   2     JENNIFER F 28 64
   3     RENEE F 35 54
   4     MANUEL M 35 60
   5     TONY M 32 68

67



17. WHERE STATEMENT

Purpose: The WHERE statement allows the user to select a subset of observations
satisfying one or more conditions from an existing SAS data set.  This
statement can be used in either a PROC or a DATA step. The WHERE
statement may only be used in a DATA step with a SET, MERGE, or
UPDATE statement.

General Form: WHERE  where-expression ;
                |

(A)

(A) where-expression       a valid arithmetic or logical expression

Samples:

(1) WHERE  SCORE >  50 ;

(2) WHERE  DATE >=  ‘01JAN89’D ;

(3) WHERE  STATE =  ‘MISSISSIPPI’ ;

(4) WHERE  RACE =  •  ;

 /*combines two conditions by finding observations that satisfy either condition.*/
(5) WHERE  CITY =  ‘NEW YORK’   OR  CITY = ‘NEWARK’ ;

 /*combines two conditions by finding observations that satisfy both conditions.*/
(6) WHERE   SKILL   EQ      ‘SAS’     and      YEARS   EQ    4   ;

(7) WHERE  (NUM <2  OR  NUM >4) ;

68



17.1  WHERE  Operators

The following operators can be used only with WHERE processing.

17.1.1   BETWEEN—AND  Operator

Purpose: Selects observations based on a range of values.

General Form:     WHERE  variable  BETWEEN   value1   AND   value2 ;

value1 and value2 are constants or expressions which specify the limits of the range
of values...value1 and value2 are included in the range.

Samples:

(1) WHERE  SALES   BETWEEN   90   AND   100 ;

You can also combine the NOT operator with the BETWEEN—AND operator to
select values that fall outside the range.

(2) WHERE SALES   NOT  BETWEEN   90  AND  100 ;

69



17.1.2  CONTAINS  Operator

Purpose: Select observations that contain the character string specified in the
WHERE expression.

General Form:         WHERE   variable   CONTAINS    ‘string’ ;

or

WHERE  variable   ?    ‘string’ ;

The position of the character string in the variable’s value does not matter.  The
CONTAINS  operator distinguishes between uppercase and lowercase characters
when making comparisons.

Sample: WHERE   LASTNAME   ?   ‘Mc’ ;

70



17.1.3    IS NULL   or   IS MISSING   Operator

Purpose: Selects all observations in which the value of a variable is missing.

General Form: WHERE  variable  IS NULL ;

or

WHERE  variable  IS MISSING ;

Sample:

DATA NOTNULL ;
  INPUT NAME $ 1-8 AGE 11-12 ;
DATALINES;
   .      27
JENNIFER  28
RENEE     35
MANUEL     .
TONY      32
;

PROC PRINT ;
WHERE NAME IS NOT NULL and AGE IS NOT MISSING ;

RUN;

Sample Output:

OBS       NAME        AGE

 2        JENNIFER     28
 3        RENEE        35
 4        TONY         32

71



17.1.4  SOUNDS-LIKE operator in a WHERE clause

Purpose: Selects observations that contain a spelling variation of the word or words
specified in the WHERE expression.

General Form:       WHERE   variable    =*     ‘string’ ;

Sample:

DATA EDITNAME ;
  INPUT NAME $ ;
DATALINES;
ALAN
ALLEN
ALLAN
DAVE
JOSEPH
;

PROC PRINT ;
  WHERE  NAME  =*  ‘ALAN’ ;
RUN;

Sample Output:

OBS     NAME

 1      ALAN
 2      ALLEN
 3      ALLAN

72



17.1.5  LIKE  Operator

Purpose: Selects observations with character values matching a specified pattern.
+
General Form: WHERE   variable   LIKE    ‘string1%string2’  ;

WHERE   variable   LIKE    ‘string1_string2’   ;

There are two special character available for specifying patterns:

% The percent sign tells SAS that any number of characters can occupy that position.

_ The underscore sign tells SAS to match one character in the value for each underscore
character.

Sample:

DATA SELECT ;
  INPUT NAMES $ ;
DATALINES;
DIANA
DIANE
DIANNA
DIANTHUS
DYAN
;

PROC PRINT ;
  WHERE  NAME  LIKE  ‘D_AN’  or  NAME   LIKE  ‘DIA%A’ ;
RUN;

Sample Output:

OBS       NAMES

 1        DIANA
 3        DIANNA
 5        DYAN



EXERCISE  8   (computer-assisted)

Write one SAS program and include the following DATA and PROC steps:

(1) Creates a SAS data set Maryland.
Create a second SAS data set Virgina.

 Each SAS data set represents sample traffic violations in Maryland and Virginia.

SAS data set Maryland

State  Number_Accidents  Violation_Code

MD 118 25
MD 120 10
MD 123 30
MD 124 30

SAS data set Virgina

State Number_Accidents  Violation_Code

VA 454 25
VA 460 15

(2) Create the SAS data set CONCAT by concatenating the two
SAS data set Maryland and Virginia. The SAS data set  will include all six
observations in the order they appear in the data sets Maryland  and Virginia data sets.

(3) Sort the SAS data set CONCAT by Violation_Code. 

(4) Creates a SAS data set CODE and select only those observations
from the SAS data set CONCAT where the Violation_code is 10.

(5) Creates a SAS data set FEES which includes the variables Violation_Code
and FEE. The resultant SAS data set FEES is displayed below.

SAS Data Set FEES

Violation_Code  FEE

10 75
15 45
25 60
30 80

(6) Create a SAS data set and merge the data sets CONCAT and FEES so that the
variable FEE appears on each of CONCAT’s observations matching the Violation_Code.

(7) Check the SAS log and SAS Output. Is this the desired SAS  Output?

74



EXERCISE  9    (computer-assisted)

Write one SAS program and include the following DATA step and PROC steps:

(1) A SAS DATA Step creates a SAS data set STUDY.
For instance, the SAS data set STUDY represents the variables  ID   TREATMENT  and
RESPONSE. The SAS data set STUDY is shown below.

SAS data set STUDY

OBS ID  TREATMENT  RESPONSE

1 A 1 35.45
2 A 2 39.80
3 A 3 .
4 B 1 30.53
5 B 2 32.75
6 B 3 37.90
7 C 1 42.25
8 C 2 45.76
9 C 3 .

(a) Include a WHERE statement in a PROC PRINT step and obtain a listing of
the observations where the value of RESPONSE is missing.

(b) Include a WHERE statement in another PROC PRINT step and obtain a listing of the
observations where RESPONSE is between 32 and 38.

(2) Creates a SAS data set FINAL which includes the observations
for TREATMENT 2, where RESPONSE is greater than 35.

75



Other Base SAS software
features that may be helpful to
you



INFILE statement with  FIRSTOBS =  and  OBS =   options

There are a variety of options that can be used with an INFILE statement to control how data are
read and to allow the SAS program more control over the input  operation.

 INFILE   statement  with  FIRSTOBS  =        and  OBS  =        options     ;

Purpose:    To control which records are read from the data file.

General Form:    INFILE   fileref    FIRSTOBS =  n1     OBS =  n2  ;
|                     |

  (A)                 (B)
(A) n1 the record number of the first data line to read
(B) n2 the record number of the last data line to read

Sample external data :    filename is   DATA1.txt

1   31   62    126
2   20   78    154
3   28   64    128
4   29   96    155
5   21   66    128
6   27   96    265
7   21   68    120
8   42   72    138

Sample Program:

FILENAME   IN1   ‘drive:\path for the filename  DATA1.txt’ ;

DATA TEMP1  ;
INFILE     IN1    FIRSTOBS =  3      OBS =  7   ;
INPUT    ID   $    AGE     PULSE_1   PULSE_2   ;

PROC PRINT  ;
RUN;

Sample Output:

              OBS    ID    AGE    PULSE_1    PULSE_2

               1     3      28       64        128
               2     4      29       96        155
               3     5      21       66        128
               4     6      27       96        265

        5     7      21       68        120

77



INFILE  Statement with MISSOVER  option

Purpose: By default, SAS will go to the next data line to read more data if SAS has reached the
end of the data line and it still has more variables to read. The MISSOVER option
prevents SAS from going to the next data line to read values with LIST input style if
it doesn’t find values in the current line for all input variables.  SAS assigns missing
values to any remaining variables.

General Form:      INFILE   fileref    MISSOVER   ;

Sample external data:   filename is DATA2

87   85
74   80    83

Sample Program:

FILENAME   IN1  'WXYZABC.DATA2'   ;    /* syntax for SAS program  executed on IBM/MVS */

DATA TEMP2 ;
   INFILE   IN1    MISSOVER  ;
  INPUT   TMP1 - TMP3  ;

PROC PRINT ;
RUN;

Sample Output:
 

                   OBS    TMP1    TMP2    TMP3

                    1      87      85       .
                    2      74      80      83

78



INFILE  Statement  with  STOPOVER   option

Purpose: To halt program execution in case of missing data so the data can be set right. The
STOPOVER option stops processing the DATA step when an INPUT statement using
LIST input style reaches the end of the current record without finding values for all
variables in the statement. The system variable  _ERROR_ is set to 1, and the
offending data line will be printed to the SAS log .

General Form:     INFILE   fileref     STOPOVER  ;

Sample external data:  filename is DATA3

87   85
74    80     83

Sample Program:

FILENAME  IN1  'drive:\path for the filename DATA3.txt'  ;
DATA TEMP3  ;
   INFILE   IN1    STOPOVER   ;
   INPUT    TMP1 - TMP3  ;

Sample SAS Log:
 1
 2     FILENAME IN1 'drive:\path for the filename DATA3.txt'  ;
 3
 4       DATA TEMP3 ;
 5          INFILE IN1   STOPOVER ;
 6          INPUT   TMP1 - TMP3 ;
 7
 NOTE: The infile IN1 is:
       Dsname=WXYZABC.DATA3,
       Unit=3380,Volume=DSA004,Disp=SHR,Blksize=11475,
       Lrecl=15,Recfm=FB
 ERROR: INPUT statement exceeded record length
        INFILE WXYZABC.DATA3 OPTION STOPOVER specified.

 RULE:      ----+----1----+----2----+----3----+----4----+----5---
 1          87  85
 TMP1=87 TMP2=85 TMP3=. _ERROR_=1 _N_=1
 NOTE: 1 record was read from the infile IN1.
 NOTE: The SAS System stopped processing this step because of
       errors.
 NOTE: SAS set option OBS=0 and will continue to check statements.
 WARNING:The data set WORK.TEMP3 may be incomplete. When this
 step was stopped there were 0 observations and 3 variables.

79



Multiple  INFILE  and  INPUT  Statement

Purpose: Read two or more raw data files into a SAS data set with a single DATA
step.

Sample external files:  Both files contain the same number of records.  

External filename is NUM1.txt’ External filename is NUM2.txt’

          1   2   3                4    5     6
          7   8   9              10   11   12
          13  14   15              16   17   18

Sample Program:

FILENAME  IN1  'drive:\path for filename NUM1.txt'  ;
FILENAME  IN2  'drive:\path for filename NUM2.txt'  ;

DATA  TEMP5 ;
     INFILE IN1 ;
       INPUT  A  B  C ;
     INFILE  IN2 ;
       INPUT  X  Y  Z  ;

PROC PRINT;
RUN;
Sample Output:

OBS    A    B    C     X     Y     Z

              1     1    2    3     4     5     6
              2     7    8    9    10    11    12
              3    13   14   15    16    17    18 

80



DO/END STATEMENT

Purpose: Tells SAS that all statements in the DO loop are executed repetitively as a unit until a
matching END statement is encountered.

General Form 1: DO index-variable = start TO  stop BY increment;
                                                        |                       |              |                  |
                                                      (A)                   (B)           (C)               (D)

   (...  include other the SAS statements )

END ;

(A)  index- variable names a variable whose value changes in each iteration of the loop. This
variable is kept in the SAS data set.

 
(B)   start starting value for the index-variable.

(C)   stop ending value for the index-variable.

(D)   increment     by default the index-variable is incremented by 1 before each iteration of
the DO loop.

Sample 1 :

DATA   LOOP1  ;
   DO  X = 1  TO  10   BY   2 ;
     Y = SQRT(X)  ;
     OUTPUT;
   END;

PROC PRINT;
RUN;

Sample Output 1:
      OBS    X       Y

                        1     1    1.00000
                        2     3    1.73205
                        3     5    2.23607
                        4     7    2.64575
                        5     9    3.00000  

81



DO/END  Statement

Purpose:     Used to execute a group of statements when a condition is met.
                   

General Form 2:         IF condition then DO ;

 .....  other SAS statements

END ;

Sample 2:

DATA   DOLOOP2  ;
   INPUT    MONTH ;
   IF   MONTH    LE  0   THEN  DO ;
     BADDATA  +  1 ;
     MONTH = . ;
   END ;
DATALINES;
1
2
-4
3
0
;
PROC PRINT;
RUN;

Sample Output 2:

    OBS    MONTH    BADDATA

                      1       1         0
                      2       2         0
                      3       .         1
                      4       3         1
                      5       .         2      

82



ARRAY STATEMENT

SAS does have arrays, but they are used in different ways than in traditional programming languages like C,
FORTRAN, and BASIC. An array in SAS consists of variables. You use arrays when you want to do the same thing
to each variable in the array, and you don’t want to write a separate statement for each variable. Arrays are
temporary in SAS, existing only for the duration of the DATA step in which they are defined. Arrays provide ways
to shorten or simplify your SAS programs.

Purpose: An ARRAY is a convenient way of defining a set of variables to be processed.

General Form:  ARRAY   arrayname   (n)   [$]   variable1...variablen ;
                                           |             |      |            |
                                         (A)         (B)   (C)         (D)

(A)  arrayname identifies the group of variables...must not match any of the variable names in
your data set or any SAS keywords.

(B)  n number of variables

(C)  $ indicates character variable

(D)  variable1...variablen lists variables (must contain either all numeric or all character)
The ARRAY statement must be used before the arrayname is referenced in the DATA step.

Sample Program 1:

DATA   RECODE ;
  INPUT   A   B   C   D ;
  IF A = 99   THEN A = . ;
  IF B = 99   THEN B = . ;
  IF C = 99   THEN C = . ;
  IF D = 99   THEN D = . ;
DATALINES;
42  43  26  99
43  14  99  34
42  99  53  25
99  34  33  94
;
PROC PRINT ;
RUN;

Sample Output 1:   OBS     A     B     C     D

                    1     42    43    26     .
                    2     43    14     .    34
                    3     42     .    53    25
                    4      .    34    33    94    

83



Sample 2:

 The SAS program in Sample 1 can be re-coded to reduce the amount of
repetitive coding.

Sample Program 2:

DATA   ARRAY1  ;
  INPUT   A  B  C  D  ;
  ARRAY   NINES(4)   A  B  C  D ;
      DO  COUNT  =  1  TO   4  ;
      IF NINES(COUNT)   =  99  THEN  NINES(COUNT) = .  ;
      END;
  DROP COUNT ;
DATALINES;
42  43  26  99
43  14  99  34
42  99  53  25
99  34  33  94
;

PROC PRINT ;
RUN;

Sample Output 2:

OBS A B C D

             1     42    43    26     .
             2     43    14     .    34
             3     42     .    53    25
             4      .    34    33    94   

84



Sample 3:

Note: The number of elements in the array may be unknown. In such a case the asterisk
replaces the actual number in the ARRAY statement. The DIM function returns the
number of elements in the array.

Sample Program 3

DATA   ARRAY2  ;
    INPUT    A  B  C  D  ;
      ARRAY  NINES(*)   A   B   C   D  ;
          DO  COUNT  =  1  TO  DIM(NINES)  ;
          IF NINES(COUNT)   =  99   THEN  NINES(COUNT)  =  .  ;
          END;
    DROP COUNT ;
DATALINES;
42  43  26  99
43  14  99  34
42  99  53  25
99  34  33  94
;

PROC PRINT ;
RUN;  

Sample Output 3 :
                                OBS     A     B     C     D

                    1     42    43    26     .
                    2     43    14     .    34
                    3     42     .    53    25
                    4      .    34    33    94     
                                               

85



Sample 4:

 Use an ARRAY statement to create new variables.

Sample Program 4:

DATA    ARRAY3  ;
    INPUT   LETTERS    $  ;
    ARRAY   NEWVAR(3)   $   SUBT1-SUBT3  $ ;
          DO   I   = 1  TO  3  ;
          NEWVAR(I)  =  SUBSTR( LETTERS,  I,  1)  ;
          END ;
    DROP  I  ;
DATALINES;
ABC
LPY
;

PROC PRINT ;
RUN;

Sample Output 4:

  OBS    LETTERS    SUBT1    SUBT2    SUBT3

         1     ABC        A        B        C
         2     LPY        L        P        Y  

86



Sample 5:

Use an ARRAY to accomplish the following tasks:

(1)  If the value of a variable is less than 0, then set it to missing.

(2)  Keep count of the number of times this occurs for each observation.

Sample Program 5:

DATA   ARRAY4 ;
  INPUT   X1 - X4 ;
     ARRAY   TEST(4)  X1 - X4  ;
     COUNTER  =  0  ;
        DO  NUM  =  1  TO  4 ;
              IF TEST(NUM)   <  0  THEN  DO  ;
              TEST(NUM)  =  .  ;
              COUNTER + 1  ;
              END ;
        END;
DROP NUM ;
DATALINES;
0  1  3   - 6
1  -7  0    0
-2  0  -1   5
1  2   -3   4
;

PROC PRINT ;
RUN;

Sample Output 5:

    OBS    X1    X2    X3    X4    COUNTER

          1      0     1     3     .       1
          2      1     .     0     0       1
          3      .     0     .     5       2
          4      1     2     .     4       1
                                                 

87



Sample 6:

(1)  Suppose we have the data lines :

P1 P2 P3 P4 P5

  2   0   1   9   1
  9   1   2   0   2

                 0             9             2              0            1

(2)  Create a SAS data set and assign the following scores

39.3, 84.4, 77.4, and 47.0

       for each of the values 0, 1, 2 and 9 respectively.

(3)  Use the SUM function to determine the sum of the scores.

Sample Program 6 :

DATA TEST ;
 INPUT P1 P2 P3 P4 P5 ;
  ARRAY REN(5)  P1 - P5 ;
    DO J= 1 TO 5 ;
     IF REN(J) = 0 THEN  REN(J) = 39.3 ;
     ELSE  IF REN(J) = 1  THEN REN(J)  = 84.4 ;
     ELSE  IF REN(J) = 2  THEN REN(J)  = 77.4 ;
     ELSE  IF REN(J) = 9  THEN REN(J)  = 47.0 ;
    END;
 SCORE = SUM(P1,P2,P3,P4,P5);
 DROP J ;
 DATALINES;
2  0  1  9  1
9  1  2  0  2
0  9  2  0  1
;

PROC PRINT ;
RUN;

Sample Output 6:

 OBS     P1      P2      P3      P4      P5     SCORE

  1     77.4    39.3    84.4    47.0    84.4    332.5
  2     47.0    84.4    77.4    39.3    77.4    325.5
  3     39.3    47.0    77.4    39.3    84.4    287.4

88



SET Statement with OBS  =  data set option

Purpose: Subset a SAS data set by limiting the number of observations that SAS reads.

General Form: SET  sasdataname (OBS = n) ;
|

(A)
(A)   n number of the last observation to be read

Sample 1:

DATA   SUBSET3 ;
SET   ALL (OBS = 10) ;

________________________________________________________

Subset a SAS data set by indicating a starting point to select observations

General Form: SET  sasdatasetname  (FIRSTOBS  =  n)
|

(B)

(B)  n the first observation to be read from the SAS data set

The two data set options, FIRSTOBS =    and  OBS =   are often used together to define a range of
observations to be selected.

Sample 2:

Subset a SAS data set by indicating which observations you want.

DATA   SUBSET4  ;
 SET  ALL (FIRSTOBS  =  10  OBS  =  100)  ;

Note:  FIRSTOBS =   cannot be used when a WHERE statement or when a
WHERE = data set option is used in the DATA step.

89



Four variables used in the SET and MERGE statements

(1) IN  =  variable

Purpose: To determine if the data set contributed to the observation
currently in the program data vector.  Internally, the special IN = variable is set
to 1 when data set contributes to the current observation.

(2) END  =  variable

Purpose: To determine if the data set contributed the last observation.
(set to 1 after the last observation is read)

(3) FIRST.by-variable
LAST.by-variable

Purpose: FIRST.by-variable and LAST.by-variable  are automatically created and named
by SAS for each variable in the BY statement.

FIRST.by-variable =1 for the first observation in a by-group, otherwise FIRST.by-variable =0
LAST.by-variable =1 for the last observation in a by-group, otherwise LAST.by-variable =0

Note: The FIRST.by-variable   and the LAST.by-variable   appear in the program data vector,
but not in the SAS  data set.

90



MERGE  with IN  =   variable  and  END  =   variable

General Form: MERGE sasdsname1 sasdsname2 (IN = variable1)  END =  variable2; BY
variables ; | |

(A) (B)
(A)   variable1 a temporary numeric variable

The value of variable1 is 1 when the data set contributes
to the current observation; otherwise, the value of variable1 is 0.

(B)    variable2 a temporary numeric variable

The value of variable2  is 1 after the last observation is read.
Sample:
DATA NEW2   ;
  MERGE   NAMES   CREDIT   END = E  ;
  BY NAME  ;
  FIRSTNAM  =  FIRST.NAME  ;
  LASTNAM   =  LAST.NAME  ;
  END = E  ;

PROC PRINT  ;
TITLE  ' SAS Data Set NEW2 '  ;

RUN;

         SAS data set NAMES

                         OBS    NAME

                          1     JENNIFER
                          2     MANUEL
                          3     TONY

SAS data set CREDIT

                 OBS    NAME       DATE    CREDIT

                  1     MANUEL    11780      355
                  2     MANUEL    11781      125
                  3     TONY      11842      350 

Sample Output:
SAS data set NEW2

  OBS   NAME        DATE   CREDIT    FIRSTNAM    LASTNAM     END

   1    JENNIFER       .       . 1 1 0
   2    MANUEL     11780     355 1 0 0
   3    MANUEL     11781     125 0 1 0
   4    TONY       11842     350 1 1 1

91



Sample :   The  IN =  variable

DATA MERGE;
  MERGE   NAMES (IN=A)    SURVY (IN=B)  ;
  BY  NAME  ;
  IF  A = 1  AND  B = 1  ;

PROC PRINT;
RUN;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT NAME

 1 JENNIFER F 1 28 64 JENNIFER
 2 MANUEL M 2 35 60 MANUEL
 3 PAUL M 3 35 54 RENEE
 4 RENEE F 4 32 68 TONY
 5 TONY M

Sample Output :   SAS data set MERGE
                                         

OBS NAME         SEX    AGE HEIGHT

  1     JENNIFER     F       28      64
  2     MANUEL       M       35      60
  3     RENEE        F       35      54
  4     TONY         M       32      68

92



Sample :

DATA  ACCTCPU ;
SET TEMP8 ;

 IF FIRST.CPUNUM  =  0  AND  LAST.CPUNUM  =  1  THEN  DELETE ;
 BY  ACCT   CPUNUM ;

PROC PRINT ; 
RUN;

Sample Output :

                         SAS data set ACCTCPU 

                      OBS    ACCT    CPUNUM

                       1     MXM1      1
                       2     MXM1      2
                       3     NUA1      2
                       4     NUA1      6
                       5     NVJ2      1
                       6     NVJ2      2
                       7     NVJ2      3
                       8     NVJ2      6
                       9     NVJ5      1               

93



SET  statement, BY statement with NOTSORTED  option

Purpose:The NOTSORTED option in the BY statement is useful when data are grouped
according to the values of a variable (in BY groups), but the groups are not in
ascending or descending order.

General Form: BY  by-variable   NOTSORTED ;
|

(A)

(A)  NOTSORTED indicates that observations with the same BY value are grouped
together, but are not sorted

Sample:
The data set WEATHER has the observations with the same month value grouped
together (the values for month are in calendar month rather than alphabetical).

SAS data set WEATHER

OBS    MONTH    TMP

                        1      NOV      72
                        2      NOV      68
                        3      DEC      58
                        4      DEC      60
                        5      JAN      45
                        6      JAN      56

DATA SUBSET6  ;
SET WEATHER  ;
BY  MONTH    NOTSORTED  ;
IF  FIRST.MONTH  ;

PROC PRINT ;
  TITLE   'SAS DATA SET SUBSET6 ' ;
RUN;

Sample Output:
SAS DATA SET SUBSET6

OBS   MONTH   TMP

1 NOV 72
2 DEC 58
3 JAN 45

94



PROC FORMAT procedure

***SAS user-defined formats***

Purpose: Create user-defined formats 

General Form: PROC FORMAT   ;

VALUE  format-name   /*general form of the VALUE statement*/
 range1 = ‘label-1’

range2 = ‘label-2’
.
.
.

;

format-name assigns a name to the format

• canot be longer than 8 characters
• cannot end with a number
• cannot contain any special characters except the underscore
• cannot be the name of a SAS format
• must start with a $ if it applies to a character variable

range specifies one or more values, a range of values, or a list of ranges that a
variable format can have.

character values must be enclosed in quotes

formatted-value the label can be as long as 200 characters

95



***SAS user-defined informats***

Purpose: Create user-defined informats

General Form: PROC FORMAT ;

INVALUE   informat-name /*INVALUE statement*/
range1 =  ‘informatted-value1’
range2 =  ‘informatted-value2’
......

;

informat-name    assigns a name to the informat...
IMPORTANT...

• must be a valid SAS name
• canot be longer than 7 characters
• must not end with a number
• cannot contain any special characters except the underscore
• cannot be the name of an existing informat
• must start with a $ if it’s character informat data

range specifies one or more values, a range of values, or a list of ranges that a variable
informat can have.

• character values must be enclosed in quotes

For instance...
_________________________________________________________
range meaning example
_________________________________________________________
value a single value 12

value,...,value a list of values 12, 24, 68

value-value a range of values 12-68

range,...,range a list of ranges 12-24,34-68
_________________________________________________________

96



Examples:

Assigning number to a character string

• single numbers

PROC FORMAT ;
VALUE   QFMT  1 = ‘APPROVE’

2 = ‘DISAPPROVE’
;

• ranges of numbers

PROC FORMAT  ;
VALUE   AGEFMT

LOW - < 0  =   ‘MISCODED’
0 - 12           =    ‘CHILD’
13 - 19         =    ‘TEEN’
20 - HIGH  =    ‘ADULT’

;

• several values that are not in a range

PROC FORMAT  ;
VALUE   SEXFMT

1= ‘FEMALE’
2 = ‘MALE’
0, 3 - 9  = ‘MISCODED’

;

Assigning character string to another character string

•  character values and ranges of character value

PROC FORMAT  ;
VALUE   $GRADE

‘A’ =  ‘GOOD’
‘B’ - ‘D’ =  ‘FAIR’
‘E’ =  ‘POOR’
‘I’, ‘U’ =  ‘SEE INSTRUCTOR’
‘OTHER’ =  ‘MISCODED’

;

97



Create permanent formats

Libname    libref      ‘drive:\pathname’ ;

PROC FORMAT LIBRARY = libref ;
/* the special reserve word ‘LIBRARY’ is required*/

VALUE   format-name
range = ‘formatted  value1’
range = ‘formatted  value2’
...

;

INVALUE   informat-name
 range1 =  ‘informatted value1’
 range2 =  ‘informatted value2’
  ...

;

98



Example SAS program...(programmed using SAS on the Mac)

Creates permanent user-defined informat as well as user-defined formats.

LIBNAME LIBRARY "MACINTOSH:SASPERMS" ;

PROC FORMAT  LIBRARY = LIBRARY ;
   INVALUE abc
       'A'  - < 'M' = 1
/* the second value of the first range is excluded... noninclusive

notation*/
       'M'  -  'Z'  = 2
        OTHER       = 3
    ;
   VALUE SMOKEFMT
        1 = 'YES'
        2 = 'NO'
    ;
   VALUE  $SEXFMT
       'F' = 'FEMALE'
       'M' = 'MALE'
   ;

DATA LIBRARY.TEMP10  ;
  INPUT   INITIAL  abc.  ID $  SEX $  SMOKER  AGE  PULSE_1 PULSE_2 ;
  FORMAT  SEX  $SEXFMT.  SMOKER  SMOKEFMT.  ;
DATALINES;
.       1   M   1   31   62    126
B       2   F   1   20   78    154
L       3   M   2   28   64    128
N       4   F   2   29   96    155
P       5   M   1   21   66    128
W       1   F   1   27   96    265
.       2   M   2   21   68    120
C       3   F   2   42   72    138
;

/*you may also access the user-defined informats and formats in the same SAS program*/
PROC PRINT DATA=LIBRARY.TEMP10;
RUN;

99



Example SAS Log:

3    LIBNAME LIBRARY "MACINTOSH:SASPERMS" ;
NOTE: Libref LIBRARY was successfully assigned as follows:
      Engine:        V612
      Physical Name: MACINTOSH:SASPERMS
4
5    PROC FORMAT  LIBRARY = LIBRARY ;
6       INVALUE abc
7           'A'  - < 'M' = 1  /* the second value of the first range
8           'M'  -  'Z'  = 2  is excluded... noninclusive notation*/
9            OTHER   = 3
10       ;
NOTE: Informat ABC has been output.
11      VALUE SMOKEFMT
12           1 = 'YES'
13           2 = 'NO'
14       ;
NOTE: Format SMOKEFMT has been written to LIBRARY.FORMATS.
15      VALUE  $SEXFMT
16          'F' = 'FEMALE'
17          'M' = 'MALE'
18      ;
NOTE: Format $SEXFMT has been written to LIBRARY.FORMATS.
19

NOTE: PROCEDURE FORMAT elapsed time was 1.40 seconds

20   DATA LIBRARY.TEMP10  ;
21     INPUT   INITIAL  abc.  ID $  SEX $  SMOKER  AGE  PULSE_1 PULSE_2 ;
22     FORMAT  SEX  $SEXFMT.  SMOKER  SMOKEFMT.  ;
23   DATALINES;

NOTE: The data set LIBRARY.TEMP10 has 8 observations and 7 variables.
NOTE: DATA statement elapsed time was 2.09 seconds

32   ;
33
34   PROC PRINT DATA=LIBRARY.TEMP10;
35   RUN;

NOTE: PROCEDURE PRINT elapsed time was 0.68 seconds

100



Example SAS Output:

                               The SAS System

   OBS    INITIAL    ID     SEX      SMOKER    AGE    PULSE_1    PULSE_2

    1        3       1     MALE       YES       31       62        126
    2        1       2     FEMALE     YES       20       78        154
    3        1       3     MALE       NO        28       64        128
    4        3       4     FEMALE     NO        29       96        155
    5        3       5     MALE       YES       21       66        128
    6        3       1     FEMALE     YES       27       96        265
    7        3       2     MALE       NO        21       68        120
    8        1       3     FEMALE     NO        42       72        138

101




